89 research outputs found

    Measurement of electron-hole friction in an n-doped GaAs/AlGaAs quantum well using optical transient grating spectroscopy

    Full text link
    We use phase-resolved transient grating spectroscopy to measure the drift and diffusion of electron-hole density waves in a semiconductor quantum well. The unique aspects of this optical probe allow us to determine the frictional force between a two-dimensional Fermi liquid of electrons and a dilute gas of holes. Knowledge of electron-hole friction enables prediction of ambipolar dynamics in high-mobility electron systems.Comment: to appear in PR

    Doppler velocimetry of spin propagation in a two-dimensional electron gas

    Full text link
    Controlling the flow of electrons by manipulation of their spin is a key to the development of spin-based electronics. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. Here we report the application of Doppler velocimetry to resolve the motion of spin-polarized electrons in GaAs quantum wells driven by a drifting Fermi sea. We find that the spin mobility tracks the high electron mobility precisely as a function of T. However, we also observe that the coherent precession of spins driven by spin-orbit interaction, which is essential for the operation of a broad class of spin logic devices, breaks down at temperatures above 150 K for reasons that are not understood theoretically

    Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia.

    Get PDF
    Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance

    Efficient Innovative Teaching Scheme of Internet of Things Based on Practice

    No full text
    • …
    corecore